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ABSTRACT 

Experimental measurements of the stress-strain and fracture 

properties of laboratory specimens of Nugget sandstone are described. 

A servo-controlled trlaxlal compression testing apparatus was employed 

which permitted simultaneous control of the lateral and axial stresses. 

Results are given for a variety of stress path conditions Including: 

unconflned compression and tension, constant confining pressure, 

proportional stress, constant mean stress, one-dimensional strain, and 

proportional strain tests.    In general. Nugget sandstone was found to 

be reasonably Isotropie and to exhibit considerable inelastic behavior 

Including hysteresis and dllatancy.    A plasticity model was formulated 

which Is capable of representing the stress-strain characteristics of 

the sandstone reasonably well over a variety of stress path conditions. 

(Distribution Limitation Statement B) 
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SECTION I 

v INTRODUCTION 

Stress-strain properties of Nugget sandstone measured 1n trlaxial 

compression laboratory experiments are presented. From these data a 

mathematical representation is formulated that is suitable for use in 

computer codes used to calculate the motion of rock masses subjected 

to stress wave loadings. 

The calculation of the response of rock masses to applied stress 

necessitates a knowledge of the stress-strain properties and fracture 

characteristics of the rock media. The in-situ rock mass differs from 

the usual laboratory specimens in that the in-situ rock may contain 

joints or faults that in some cases may strongly influence the rock 

response. Thus, for some problems the results of laboratory tests 

on intact rock specimens may not be directly applicable to the in- 

situ rock mass. However, the in-situ response undoubtedly does depend 

to some degree on the properties of the intact rock. Thus, laboratory 

tests of the type described herein are essential and from an economic 

viewpoint are the first logical step in the characterization of the 

rock behavior. 

Previous work on Westerly granite and Cedar City tonalite [1,2] 

has shown the trlaxial compression test to be a convenient experi- 

mental tool for investigating rock stress-strain behavior if the test 

apparatus is capable of applying loads along a number of different stress 

loading paths. In the present study, a large number of test conditions 

were employed to generate data, furnishing a detailed examination of 

the stress-strain response of Nugget sandstone. These data are analyzed 

in detail in this report and a mathematical representation of the model 

is described. 
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SECTION II 

EXPERIMENTAL SECTION 

The rock used in this study was Nugget sandstone, collected near 
Salt Lake City, Utah.    The intact rock is a strong, fine-grained, silica- 

cemented, pure quartzitic sandstone, with a measured porosity of 4% by volume. 

The composition, determined by thin section analysis, is predominantly 
quartz with minor chert and hematite.    This rock Is very isotropic 
without any discernible fabric.    Failure undoubtedly occurs primarily 
across grain boundaries.    The density is 2.52 gm/cc and the porosity is 
4% by volume.    A photomicrograph of a thin section Is shown in Figure 1. 
The rock has a faint visual  indication of layering.    The sandstone has 
also been used in dynamic tests and in prefractured compression tests [3]. 

The rock specimens used in this study were right circular cylinders 
with a length to diameter ratio of two and diameters of either one or 
3/4 inch.    The specimens were all cored from a large block in a direction 
transverse to the layering marks unless otherwise noted.    The specimens 
were ground on all surfaces and strain gages bonded to the axial center 
of the specimens in axial and transverse directions.    The specimens 
were then covered with laboratory plastic tubing and sealed.   A typical 
instrumented specimen is shown in Figure 3. 

An overall  view of the test apparatus is shown in Figure 2.    This 
apparatus has been described in detail previously [1];    it consists of 
a 7kb confining pressure vessel and intensifier actuated by two load 
frames.    These load frames are electro-hydraulic with closed loop servo- 
control and are slaved together with a two-channel servo-controller. 
In this way the confining pressure and the axial stress difference can 
be controlled independently so as to produce various loading oaths In 

stress space. 
The specimen axial force and confining pressure are measured 

Internal to the pressure vessel, using a steel cylinder load cell 
instrumented with bonded foil strain gages, and a Manganin pressure 
coil, as described previously [1].    The force, pressure, and specimen 
strain readings were all recorded continuously on a multichannel 
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Offner pen type recorder. Tests were carried out at an axial strain 
-4 

rate of approximately 10 /sec. A discussion of the loading paths used 

in this study will be given in the next section along with the test results 
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SECTION III 

DISCUSSION OF RESULTS 

A large number of triaxial tests were performed, utllizlnq a 

variety of stress loading paths. The axial stress difference at 

fracture is shown as a function of the confining pressure in Figure 4. 

Brittle fracture was produced at all confining pressure levels used in 

this study. The paths utilized to load the specimens are illustrated 

in Figure 5. It can be seen that the failure locus is independent of 

the loading path as observed previously for tonalite and granite [1,2,4]. 

The loading paths shown in Figure 5 are of two general types: stress 

controlled and strain controlled. Included in the former are tests at 

constant confining pressure, proportional loading, constant mean stress 

(constant J,), and a two-step loading consisting of proportional 

loading followed by a decrease in confining pressure with the axial 

stress difference held constant. The strain controlled tests include 

the one-dimensional strain test and proportional straining tests. 

Specimen fracture was not produced in any of the strain controlled 

tests. These tests will be discussed later in more detail. 

Typical plots of the principal stress-strain curves obtained from 

these tests are shown in Figures 6 to 12 for constant confining pressure 

tests and Figures 13 to 17 for proportional loading. These results 

follow a trend previously observed for Cedar City tonalite and Westerly 

granite [1,2], in that the lateral stress-strain curves are much more 

nonlinear than the axial stress-strain curves. 

The results of strain measurements in hydrostatic compression 

tests are shown in Figures 18 to 20. The linear strains from two 

typical specimens are shown in Figure 18. The difference in the strains 

in the two principal material directions was seen to be not significant 

and It Is therefore concluded that Nugget sandstone exhibits essentially 

Isotropie stress-strain response, even though the rock had faint visual 

layering. The amount of scatter exhibited by tests of different specimens 

is shown in Figure 19. The results of unloading and reloading in the 
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hydrostatic test are shown In Figure 20. It appears as though a small 

amount of permanent compaction takes place; but. In general, the 

hysteresis Is quite small and may not be experimentally significant. 

The results of constant confining pressure tests are shown In 

Figures 21 and 22. The stresses and strains have been decomposed Into 

shearing and volumetric components. The data are seen to form 

consistent curves that point up the effects of confining pressure on 

both the fracture and stress-strain behavior. The initial shear response 

Is seen 1n Figure 21 to be more dependent on the confining oressure 

level than seen previously for tonallte and granite [1,2]. The volume- 

tric curves shown In Figures 22 all exhibit dllatancy as observed 

previously for other rocks [1,2, 5]. The results of the proportional 

loading tests are plotted In a similar fashion In Figures 23 and 24 

for different ratios of the principal stresses. The curves are quali- 

tatively similar to the constant confining pressure test results. 

The results of two constant J-j or mean stress tests are shown in 

Figures 25 and 26 for the shearing and volumetric components, 

respectively. This test condition is achieved by loading the specimen 

hydrostatically to a given pressure level and then simultaneously 

decreasing the pressure as the axial stress difference is increased 

so as to keep the sum of the three principal stresses constant. 

The one-dimensional strain test results are shown in Figures 

27 to 29. The stress-loading path is determined by the condition of 

the two lateral strains being zero. This has been shown before In 

Figure 5, but it is repeated in Figure 27. The shearing and volumetric 

stress-strain curves are shown in Figures 28 and 29, respectively. A 

new type of strain-controlled test was developed in this program in 

which the ratio of the axial and lateral strains was held constant. 

The results from two specimens tested at a strain ratio of 

e-j/e, = - 0.249 are shown in Figures 30 to 32. Actually the strain 

ratio during the initial portion of the test is less than the stated 

value. The specimen Is loaded in unconfined compression during the 

initial portion of the test. Once the principal strains do reach the 

ratio of - 0.249 at the stress indicated in the figures, the confining 

*-*w*-immmm 
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pressure Is servo-controlled to keep the strains In this ratio. 
The stress loading path established during the test Is shown In Figure 
30.    It can be seen that the loading path rises sharply at first and 
then curves so as to stay Just within the failure locus.    Shearing and 
volumetric strains from these tests are shown In Figures 31 and 32, 
respectively.   An Interesting result also obtained from this test 
Is shown In a hydrostatic loading of a specimen before and after the 
proportional strain test (Fig. 33).    The behavior before the test Is 
nearly Isotropie while after the proportional strain test the 
anlstropy Is very evident.   As suggested by Walsh [6] this anlsotropy 
could be produced by directional mlcrocracklng in the specimen during 
the proportional strain test. 

Strain-controlled tests, such as the one-dimensional strain and 
proportional strain described above, differ In various fundamental 
respects from the stress-controlled tests.    Primarily, the strain- 
controlled tests furnish a particular loading path In stress space, 
determined by the strain conditions as well as stress-strain response. 

The loading paths shown In Figures 27 and 30 reflect the basically 
non-linear response of this sandstone.   A comparison of these two 
figures Indicates that changing the strain ratio c-Ze^ from 0 to -0.249 
causes the loading path to tend toward the fracture locus.    It is 
believed that as long as the rock exhibits dllatency before brittle 
fracture, further decreases 1n the strain ratio will not produce fracture. 
Rather the expected result would be to cause the stress loading path 
to more closely approximate the fracture locus.    While these Ideas must 
be regarded as conjectural at the present time, further tests at 
various constant strain ratios could be employed to check this hypothesis. 
It appears that the strain-controlled tests can provide significant 
Information about the rock behavior. 

A number of unconflned tension tests were performed on the Nugget 
sandstone and some typical results are shown In Figures 34 to 36.    These 
tests were run with three-Inch long by one-Inch diameter specimens.    The 
specimens were end-bonded to steel-end caps with epoxy and a small 
epoxy fillet (approximately 1/16 Inch) placed at the end to minimize end- 



■      ,11  ■■ m.   .--.,, „„■, _     —  ,.    ,■,„■■■.■ 1.1..,. „,             '    — ..mt,,~mM,.>*.,u™»m«****mm^<<*~*m*mim*kmmmimt***m-*v~J.. i , i u uu ■lliMnamWnffflfffflflMt' 

AFWL-TR-71-54 

bond failure.   A special fixture with flexible alignment Joints was 
constructed for the tension tests.   The specimen fractures appeared 
to occur randomly throughout the central part of the specimen and were 
always aligned normal to the specimen axis.    Strain gages were placed 
on the axial midpoint of the specimens and aligned In both axial and 
transverse directions.   The principal stress-strain curves are 
shown In Figure 34.    The fracture stress Is approximately 1300 psi 
This Is about 1/28 of the unconfined conipresslve strength.    It can 
be seen In this figure that the response Is nonlinear.    The lateral 
strain behavior has two Interesting aspects.    First, the magnitude 
of the lateral strain Is very small.    Second, the lateral strain 
Is initially in compression, but changes direction during the test 
and goes Into tension.    This result was confirmed on four different 
specimens.    It should be noted that this corresponds to a negative 
Poisson effect.    Clearly, the behavior in tension is as complex 
as it Is In compression and Inelastic effects are marked.    More 
evidences of inelastic effects are seen In the tension load-unload 

cycles shown in Figures 35 and 36.    A significant amount of permanent 
strain is observed in these tests unloaded before fracture.    Previous 
cycled tension tests have been reported by Wawersik [7] with results 
similar to those given here.    A comparison of unconfined tension and 
compression stress-strain curves is shown in Figure 37.    It can be 
seen that the initial modulus in tension appears to be higher than in 
compression.    This result seems suspicious as a smooth curve passing 
through the origin would be expected.    A further check of these results 
was not made, however. 

A number of load cycling tests were run with proportional stresses 
in compression.    Some typical results are given in Figures 38 through 41. 

Floures 38 and 40 show the shearing stress-strain response for two 

different specimens while Figures 39 and 41 show the dilatational response, 
Permanent set Is a characteristic feature in unloading.   Also shown in 
these figures are the stress-strain curves for specimens loaded to 
fracture at the same stress ratio. 

:■    .   KH 
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SECTION IV 

MATHEMATICAL REPRESENTATION 

In this section a mathematical representation of the stress-strain 
behavior of Nugget sandstone will be developed.   Despite recent 
Investigations of the mechanisms Involved In rock deformation [6*8,9*10] 
It Is not presently possible to formulate a constitutive equation for 
rock without recourse to experimental data.   This latter procedure* 
essentially an empirical one* will be followed here. 

In previous work on stress-strain models for rock [2], It has been 
shown that many features of rock behavior can be represented by the 
use of a plasticity model with strain hardening.    In particular, the 
permanent set observed In unloading tests* the nonllnearlty of the 
shearing stress-strain curves* and the dllatancy effect seen In the 
volume strain response can all be Incorporated Into a plasticity 
constitutive relation.    Previous to this the use of plasticity 
equations for modelling rock behavior has been criticized [11] on the 
grounds that the deformation mechanisms were not similar In nature to 
the mechanisms controlling plastic deformation in metals.    If one takes 
the position that the plasticity model Is only a conceptual means of 
aiding the writing of constitutive equations* then the objection 
appears to be unfounded.    However, because of the presumed difference 
In deformation mechanism, it may be Important to carefully verify the 
applicability of all of the features of plasticity models to the 
deformation of rock. 

In a recent study [12] an assessment of certain features of 
plasticity models and their application to the stress-strain behavior 
of brittle rock has been carried out.    Two features were studied in 
particular:    the lack of a clearly defined yield point and the effect 
of the loading path on stress-strain behavior.    It was shown that certain 

changes In the use of conventional strain hardening plasticity models 
could Improve the accuracy of the material representation.    For complete- 
ness these two developments will be reviewed here. 

8 
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The lack of a definite yield point can be seen In the shearing 
curves of Figures 21, 23, 38, and 40.    Permanent set can be seen In the 
unloading curves of Figures 38 and 40 but the effect appears to be a 
gradual one and no notlcable discontinuity occurs.   Thus, a definite 
elastic limit seems arbitrary and artificial.    It was shown In Ref. [12] 
that the objection could be circumvented by the use of a distributed 
yield function which can be derived by analogy with some simple spring 
and friction element models.   This technique also appears to be 
capable of modeling the unloading behavior more accurately than has 
been done with the strain-hardening model although this has not been 
carried out to date. 

The second point studied In Ref. [12] Is concerned with the effects 
of load path on the stress-strain response.    It is difficult to ascertain 
the effect of load path merely by looking at the stress-strain curves 
from different tests as in most cases the state of stress is changed 
as well by the change in the path.   To separate the effects of stress 
state from those of the loading path, per se, a number of parametric 
plots were constructed so as to vary the loading path but keep the state 
of stress constant.    These were developed and shown previously [12], but 
will be repeated here for clarity.    Consider the loading paths shown in 
Figure 5.    At each intersection of two loading paths a point Is reached 
where the stress state is identical in two different tests but has been 
reached by different paths.    A comparison of the state of strain at 
the point In question will then reveal whether loading path 1s an 
important variable In the deformation.    This comparison has been made 
in Ref. [12] In three different ways.    First, the strains along 
different constant confining pressure loading paths were plotted.    The 
constant confining pressure tests themselves form a continuous curve 
and at each Intersection with another type of test a strain value from 
that test Is plotted.   This procedure was repeated for constant J, 

loading paths and the one-dimensional strain loading path.   The results 
from Ref. [12] are shown in Figures 42 through 47.     As evidenced by 
the agreement In the strain at a stress point reached by different load 
paths, the path dependency of the strain response is minimal. 

• 
!'■--■   ■;-,' 
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If unloading as well as loading Is considered, then path effects 
can be observed In the stress-strain response.    This can be seen In 
Figures 38 through 41.    Clearly the strain at a given stress point 
depends on whether or not the point Is reached by loading or unloading. 

In Ref. [12] a plasticity model was developed that combines the 
Ideas of path Independence of the strains for loading conditions and 
permanent set and, therefore, path dependence If unloading Is considered. 
The model Is based on the associated flow rule. 

de1JP   '   5%   dX (1) 

where the scalar multipler dX Is given by 

dG dX 

V9emn A3cW 
1f dG > 0 

(2) 

dX -    0 If dG ^ 0 

The function G(o..) Is taken so that during monotonlc loading states only 

*/t?=G(a1j) (3) 

where fl^F   Is the second invariant of the plastic deviator strain 
given by 

If the associated flow rule (1) is applied to monotonlc loading states, 
then the function (3) will be satisfied making the devlatoric strains 
a function of the stress-state only.   This can be simply shown by 
differentiating (3) and then substituting in from (1) and (2).    It 
should be noted that the flow rule (1) makes only the devlatoric 
strains path independent. 

10 
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The total strain Increments are divided into elastic and plastic 
components In the usual fashion as 

de 
1j -   de1j+de U (5) 

The application of this model to the specific Nugget sandstone data 

given In this report requires the formulation of laws governing the 
elastic response and Identification of the function G.  This Involves 

Identifying specific functions for representation and curve-fitting to 

obtain the necessary constants. The number of constants required 

depends on how carefully the functions are selected and on how care- 

fully the specific material 1s being modeled. Since the point of the 

present work Is to demonstrate a new model, an effort was made to 

match the material behavior quite well. Consequently, the resulting 

equations are fairly complex. It should be understood that In 

application to calculations, these equations would be simplified If 

necessary. 

The elastic response was separated Into devlatorlc and dllatatlonal 

components as follows: 

10'4[1.95om + 45][1 - exp(- y?)] (6) 

where e* Is the elastic volume strain, equal to the sum of the three 
linear strain components and a_ Is the mean stress In ksl.   The elastic m 
shearing strain was found to depend on the mean stress as well as the 

shearing stress and also nonllnearly related to the stress. The 

elastic shearing strains are given by 

.e 
•1j Cl a1j + C. W i U (7) 

11 
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where 

0.01 
1       18.5 * 40C1  - exp(- am/30)] (8) 

C2 =   0.006 [1 - exp(- am/80)] (9) 

The plastic strain function G of Equation (3) was taken as 
9 

Col 7^-1 01) '2 
&) 

where C^ and C. are given above. The fit of these equations to the 

experimental data Is shown In Figures 48 through 59. The shear and 

volume stress-strain curves for constant confining pressure tests are 

shown compared with experiment In Figures 48 and 49 respectively. A 

similar comparison for proportional stress loading Is shown In Figures 

50 and 51 and for constant J-j tests in Figures 52 and 53. It can be 

seen from these figures that good agreement between model and 

experiment Is obtained. 

A further comparison between model and experiment is shown in 

Figures 54 through 56 for the one-dimensional strain test and Figures 

57 through 59 for a proportional strain test. Comparisons between 

model and experiment of the stress loading paths obtained in these 

strain-controlled tests are shown in Figures 54 and 57. The stress- 

strain comparisons are shown in Figures 55, 56, 58, and 59. In 

general, there is more discrepancy between the data and the model for 

the strain-controlled tests than the stress-controlled tests. This 

is probably due to the large change in stress which occurs at the onset 

of dilatancy for relatively small changes in strain. Therefore the 

model Is more sensitive to the strain controlled test. This point 

deserves further study. 

12 
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The problem of fitting a generalized model to experimental data 
Is, of course, complicated by having a large amount of data available, 
particularly data from a variety of types of tests.    Each type of test 
Imposes an additional constraint on the model.    Clearly It Is desirable 
to test the model under as wide a variety of loading conditions as 
possible, but It Is not surprising that the model does not fit all of 
the experimental results with the same degree of accuracy.    Thus 
considered, the agreement between the proposed model and the experi- 
mental data Is good. 

As stated above, this model differs from the plasticity models 
developed previously for Cedar City tonalIte and Westerly granite [2] 
In that In the present model  the shearing strains are taken to be path 
independent under loading conditions.    It Is difficult to assess whether 
the present model Is applicable to other rocks such as tonalIte or 
Westerly granite without actually going through the detailed curve- 
fitting process, and this has not been done at the present time.   The 
apparent requirement for the present model resulted from the detailed 
assessment of the stress-strain response of Nugget sandstone available 
from the present study.    Further Insight Into the modeling of the stress- 
strain behavior of rocks could be obtained by applying the present model 
to the data obtained previously for Cedar City tonal Ite [1] and 
Westerly granite [2]. 

The particular constants appearing in Equations 6 through 11 are 
significant only in terms of the mathematical expressions chosen.    They 
depend on the choice of expressions used to fit non-linear functions. 
It is the functions themselves that are significant and reflect the 
rock behavior.    For example, the non-linear hvdrostat of Equation 6 could 
be expressed mathematically in a number of ways, and the resulting 
constants reflect both the material behavior and the mathematical form. 
This is in contrast to linear behavior, where a unique representation 
would result.   The underlying basis of the nonlinearity of the hydrostat 
is attributed to the amount of porosity and void configuration of the 
rock, but this is not necessarily reflected in the constants of Equation 6. 

13 
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SECTION V 

SUMMARY AND CONCLUSIONS 

A large amount of stress-strain data has been obtained from 

controlled path loading trlaxial tests of Nugget sandstone.   The tests 

employed In this study Included constant confining pressure, propor- 

tional stress, constant J1, one dimensional strain, proportional strain, 

unconflned compression, and unconflned tension.    In general, these data 

are consistent and display a number of Interesting features.    Nugget 

sandstone Is observed to fracture In a brittle manner over the entire 

range of confining pressures employed, however. Inelastic effects In 

the stress-strain behavior were observed.    These are evidenced by 

permanent set In unloading tests and dllatency In the volume strain 

response. 

One of the Interesting results from this program was the dllatency 

observed In the unlaxlal stress tension tests.    Repeated tests Indicated 

that as the load was applied the diameter of the specimen first decreased 

slightly, as would be expected due to the Polsson effect, but that it 

then began to Increase.    Since the specimen was simultaneously Increasing 

In length, the Increase In diameter resulted In a volumetric increase. 

It Is surmised that micro-cracking may be a possible explanation of 

this phenomena just as Is suspected with the dilatancy associated with 

compressIve states of stress. 

The Increase In diameter as the specimen is elongated obviously 

Indicates that the "apparent" Polsson's ratio is negative for some states 

of stress.   On the other extreme, the radial strain increases more rapidly 

than the axial strain just prior to fracture in the triaxial compressive 

loading experiments.    The "apparent" Poisson's ratio for this condition 

yields values greater than unity.    Poisson's ratio for this material 

therefore varies from a negative value to a value greater than unity 

depending on the stress conditions employed.    This points up the great 

need to provide more sophisticated models for rocks than the simple 

elastic models, or variations thereof, that are often utilized in designing 

structures in rock. 

14 
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The nature of path dependency of the stress-strain responst for 
Nugget sandstone was reviewed.   A plasticity model developed In another 
study that considers the devlatorlc strains In monotonlc loading to 
be Independent of the stress path was considered useful.    This model 
was fitted to the experimental results.    In general, a good comparison 
between model and experiment was achieved for all of the experimental 
tests which included a wide variety of loading paths. 
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FIGURE 1.   Photomicrograph! of Nuggtt Sandstont, Thin Stctlons 
at 36 and 120 magnification. 
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Figure 9.   Principal stress-strain curves for Nugget sandstone 
specimen No. 3» constant confining pressure, P « 5 ksl 
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Figure 10.    Principal stress-strain curves for Nugget 
sandstone specimen No. 4, constant confin- 
ing pressure, P - 41 ksl. 
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Figure 12. Principal stress-strain curves for Nugget sandstone 
specimen No. 41, constant confining pressure, P = 80 
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Figure 13.   Principal stress-strain curves for Nugget 
sandstone specimen No. 6 in proportional 
loading, o-Za, ■ 0.056. 
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Figure 27.   Loading path of one-dimensional strain test of 
Nugget sandstone specimen No. 42 
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Figure 38. Shear stress-strain curves for constant stress 
ratio tests of Nuaget sandstone specimen No. 11 
(cycled) and specimen No. 7 
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Figure 44.    Effect of loading path on shear stress-strain response 
for Nugget sandstone. 
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Figure 50.   Comparison of model and experiment; proportional stress 
loading of Nugget sandstone. 
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Figure 51. Comparison of model and experiment; proportional stress 
loading of Nugget sandstone. 
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